EULEREB GO0 OL

Yannidvlanoussakis

University Paris XI, ORSAY
France

Barcelona ,UPC, July 2013

(part of this talk was inspired by course noteRafil VanDooren UCL)



CONTENTS

A Connectivity

A PlanarGraphs

A VertexColorings

A ColoringMaps

A EdgeColoredGraphs

A Balancen SignedGraphs

A Consistencyn Marked Graphs



- PARTI 0

CONNECTIVITY



Connectivity

Definition : A graphis connected if there exists a patietweeneachpair of vertices

Example A Connected graph a Q b

Whathappenswhen Gis not connected? The gragha collection of connected
graphscalled the components

Example A graphwith 3 components P ~

Fundamental observationConnectivity has th&ansitivity property: path from x to y
and path from y to z guarantees a path from x to z

« ¢

X y Z



Connectivity

In a directed graph G = (V, E), u and v are strongly connected
if there exists a walk from v to v and from v to u.

This is an equivalence relation and hence leads to equivalence
classes, which are called th connected components of the graph

mm <o

The graph reduced to its connected components is acyclic (why ?)

This shows up in many applications, e.g. in the dictionary graph.

The connected components are the groups of words that use each
other in their definition (see later).



Connectivity

After the reduction one has an acyclic graph, which can be
ordered topologically.

What do you obtain then ? Class orderings

F

An initial class has dj,(c) = 0. A final class has dyu:(c) = O.
The other ones are intermediate.



Connectivity

Verify (strong) connectivity of a graph based on its adjacency list
ldea : start from node s, explore the graph, mark what you visit

V(1) = {2,4,5,6}
Vi2)={1,5}
V(3) = {4, 7,8}
Vi4) = {1,3,6}
V(5) = {1, 2,6}
V(6) = {1,4,5}
VI(T) = {3}
V(8) = {3}

Algorithm GenericSearch(G,s)
mark(s); L := {s}
while L £ () do
choose u € L;
if 3(u, v) such that v is unmarked then
mark(v); L := LU {v};
else
L= L[\{u};
end if
end while



Connectivity

Below we marked the chosen nodes and the discovered nodes

L

mark (1) (2} (3]

{2}

{2.1}
{2.1,5}
{2.1,5.6}
{1,5,6}
{1,5,6,4}
{5,6,4}
{5.4}
{5.4,3}
{5.3}
{5.3,7}
{5.3}

{3}

{3.8}

{3}

i

2
1
5
6

4

This algorithm has 2n steps : each node is added once and
removed once. Its complexity is therefore linear in n.



Connectivity

Because of the choices, this algorithm allows for different versions
Let us use a LIFO list for L (Last In First Out) and choose for u the
last element added to L. This is a depth first search (DFS).

Algorithm DeptFirstSearch(G,s)
mark(s); L := {s};
while L 4 () do
u = last(L)
iIf 3(u, v) such that v is unmarked then
choose (u, v) with v of smallest index;
mark(v); L := LU {v};
else
L= L\{u}
end if
end while



Connectivity

Below we marked the chosen nodes and the discovered nodes

L mark 'V =) G

{23
{2,

{2.

{2.

{2.

{2,

{2,

{2,

12,

{2.

{2.

{2.

{2,

{2,

{2}
8!

—
It

OO0 WWWwww

7}
8}

ao 0 NWH=DN

5}

N e
2

N T U U (U R G

T

This algorithm builds longer paths than the generic one (depth
first).



Connectivity

We now use a FIFO list for L (First In First Out) and choose for u
the first element added to L. This is a breadth first search (BFS).

Algorithm BreadthFirstSearch(G,s)
mark(s); L := {s};
while L 4 () do
u = first(L)
if 3(u, v) such that v is unmarked then
choose (u, v) with v of smallest index;
mark(v); L := LU {v};
else
L:= L[\{u}
end if
end while



Connectivity

Below we marked the chosen nodes and the discovered nodes

(1) (2) (3]

L mark

{2} 2

{2,1} 1

{2.1,5} 5

{1.5}

{1.5,4} 4

{1.5,4.6% 6

{5.4,6}

{4.6} - N
{4.6,3} 3 :

{6, 3} e —a

(2}
{3.7} )
{3.7.8} 8

(7.8} o

~ @
ey é: © & > é\-—/z I >

This algorithm builds a wider tree (breadth first).



Testing Connectivity



